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which should lead to a speed up by a factor of five. 
We expect this will bring the phase-extension 
capabilities of M I C E  up to those of S A Y T A N ;  the 
superiority of likelihood over other figures of merit 
should then confer a definite advantage to the 
maximum-entropy approach over other direct 
methods. We will put these expectations to the test 
by attempting the direct structure determination of 
APP as soon as possible. 
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Abstract 

The numerical method for calculating the elastic con- 
stants of molecular crystals, using the crystal packing 
program PCK 83, developed and applied to the model 
case of CO2 in previous work is here extended to 
benzene (C6H6) and urea [(NH2)2CO] crystals. Inter- 
atomic potential-energy functions coupled with rigid- 
molecule constraints are used, taking the entire 
angular dependence into account. Correlation with 
other calculations and experimental data is good. 

Introduction 

Various methodologies for modelling intermolecular 
and interatomic forces in crystals have been 
developed over the years, in crystal packing programs 
such as PCK83 (Williams, 1983) and W M I N  
(Busing, 1981), with a view to predicting their phy- 
sicochemical properties (Catlow, Cox, Jackson, 
Parker, Price, Tomlinson & Vetrivet, 1989; 
Kitaigorodsky, 1973, 1978). Of particular interest, and 

* Also at SERC Daresbury Laboratory, Warrington WA4 4AD, 
England. 

the subject of this paper, are the elastic constants of 
crystals, which are related to the second derivatives 
of the energy hypersurface at the minimum. Knowl- 
edge of the elastic behaviour of solids is of importance 
in, for example, investigating the effects of strain on 
crystal growth. 

The general theory of modelling the elastic proper- 
ties of solids developed by Born & Huang (1968) has 
been applied to ionic systems by Catlow & Norgett 
(1976) and Catlow & Mackrodt (1982) and extended 
to the study of molecular crystals by Walmsley (1968 a, 
b, 1987). An alternative approach is the numerical 
method developed by Busing & Matsui (1984), using 
WMIN,  to simulate the application of external forces. 

In the present paper, the numerical method of 
calculating the elastic constants of molecular crystals 
using the packing analysis program PCK83 
(Williams, 1983), developed and applied to the model 
case of CO2 in previous work (Pavlides, Pugh & 
Roberts 1991a), is extended to benzene and urea 
crystals. The elastic constants of CO2 are also recalcu- 
lated in an attempt to address the problem of sym- 
metry relaxation, occurring upon distorting the lat- 
tice, in more detail. Within the numerical limitations 
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of the method, inherent in any technique involving 
an optimization routine, its predictive ability was 
found to be satisfactory. Analytical equations for the 
elastic constants of molecular crystals have also been 
developed by the present authors within the pair- 
potential rigid-molecule approximation, taking inter- 
atomic rather than intermolecular interactions into 
account (Pavlides, Pugh & Roberts, 1991b). The 
results of the analytical method for the tensor com- 
ponents of CO2 are in very good agreement with those 
of the present method obtained with the same set of 
a tom-atom potentials. 

Details of the method 

In the pair potential approximation employed in the 
present paper, the intermolecular or non-bonded 
energy of the lattice is approximated by a sum of 
terms each referring to a pair of atoms in different 
molecules. Furthermore, in the rigid-molecule 
approximation, also used in the present calculations, 
no intramolecular effects are taken into account, 
which is valid to a first approximation, since in 
molecular crystals intramolecular forces are charac- 
teristically stronger than intermolecular forces. For 
larger molecules, however, this becomes less defen- 
sible. 

The energy of the lattice may be considered as a 
hypersurface, i.e. a function of the elementary cell 
parameters and the variables describing the internal 
dispositions of the constituent molecules. The deepest 
minimum obtained on this surface by minimizing with 
respect to the above variables corresponds to the 
optimal atomic configuration, which will approach 
the experimental one as closely as possible if the 
interatomic potentials of a given class of compounds 
are fitted to their structural and physical properties. 
It can be shown that the elastic constants, which 
correlate crystal strain and applied stress through 

o'i = coe j, ( 1 ) 

can be related to the second derivatives of the lattice 
energy, i.e. of the energy hypersurface at the 
minimum, with respect to the strain parameters 
(Kitaigorodsky & Mirskaya, 1964): 

=r 02 ] 
c° I _ ~ . 1  o (2) 

In the above o'i and e~ ( i =  1 , . . . , 6 )  are the six 
independent components of the stress and strain 
matrices respectively and c o ( i , j  = 1 , . . . ,  6) are the 
elastic constants. In (1) the repeated index summation 
convention is assumed and the Voigt notation used. 
In the limits of linear elasticity, the strain energy per 
unit volume, E, as obtained from (2), is 

E = l  ~cijeiej. (3) 

The above is a bivariant quadratic holding only in 
the harmonic approximation, in which higher-order 
terms are neglected. The elastic constants of a crystal 
may be obtained by considering the strain energy per 
unit volume stored due to a homogeneous deforma- 
tion. On the microscopic level, a homogeneous defor- 
mation is one in which a lattice structure is preserved 
and all cells are equivalent. It is entirely specified by 
the six independent external strain components,  e~, 
describing the changes in the lattice parameters which 
displace the molecular centres of mass proportionally, 
three internal translations and three internal rotations 
per molecule describing the accompanying changes 
in the positions and orientations of the constituent 
molecules. 

In accord with the above considerations the general 
method of calculation can be outlined as follows: 

(i) The lattice energy is minimized with respect to 
the lattice parameters and the variables describing 
molecular positions and orientations relative to some 
general crystal-fixed Cartesian-axis system. In the 
initial set-up, for the systems under investigation, the 
symmetry of the lattice parameters was used and the 
positions of the molecules were generated by the 
symmetry operators of the appropriate space group. 
In subsequently minimizing the energy, all the lattice 
parameters 'and molecular variables were allowed to 
vary independently, in order to obtain the absolute 
minimum-energy configuration for the given set of 
potentials. For this purpose, the asymmetric unit was 
expanded to include all molecules in the unit cell 
thus eliminating the need for the symmetry operators 
of the space group. 

(ii) The minimum-energy structure obtained in (i) 
is distorted by the application of axial or shear strains 
(bulk components). The changes in the lattice param- 
eters are thus described in terms of the six indepen- 
dent components of e, according to 

6 

dp = ~ (Op/Oe,)o de, (4) 
i=l  

where p can be a, b, c, a , /3  or y. The derivatives of 
p with respect to ei evaluated at zero strain are given 
by 

( ar ' /  ae~j )o = rirff r (2 - tSij) 

for the cell dimensions r = a, b, c and 

(5) 

(aO'/Oeo) o = (rs sin O)-i[r~sj + rjs, 

+ ( c o s  O/rs ) ( r2s , s j+  s2r~rj)](2-~5~j) (6) 

for the cell angles 0 = a,/3,  y, where r and s are the 
vectors containing 0. The components of r and s 
appearing in the above refer to a general crystal-fixed 
Cartesian-axis frame. The energy of the distorted 
lattice is then minimized with respect to the molecular 
variables to allow for internal relaxation. Again, these 
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are allowed to vary independently with no symmetry 
restrictions, as described in (i). 

(iii) From (ii), strain energy curves were obtained 
with three pairs of points symmetrically disposed 
about the equilibrium position and fitted with quad- 
ratic functions using a least-squares technique, yield- 
ing values for the elastic constants, formally defined 
in (2). In the limit of linear elasticity, using the 
appropriate symmetry conditions for co, (3) yields 
expressions of the form 

2 E=½cllel 
E = 2c44e 2 (7) 

E 1 2 1 2 
= 2Cl l e i + 2 c 2 2 e 2  + c l 2 e l  e 2 .  

Similar expressions exist for the other non-zero 
components of the systems under investigation, i.e. 
C22 , C33 , C55 , C66 , Cl3 and c23. The first and second 
equations (7) define strain-energy curves for the 
uniaxial- and shear-strain components, el and e4 
respectively, from which Cll and c44 are obtained, 
whereas the third of these equations defines a strain- 
energy surface for el and e2 from which the biaxial 
component cl2 may be obtained. This surface consists 
of strain ellipses rotated by 45 ° to the principal-axis 
system (Pavlide~ et al., 1991a) in which the elastic 
constants matrix 

( Cll cl:) (8) 
Cl2 C22] 

is diagonalized. The diagonal terms are c i l =  
(Cll + Cl2) and c~2 -- (Cll -- Cl2), with similar 
expressions for the other biaxial components cl3 and 
c23. Univariant calculations were performed in the 
principal-axis system, one with e2 = el yielding (c l l+  
Cl2 ) and the second with e 2 = - - e  i yielding ( C l l -  Cl2), 
from which values for Cll and cl2 were obtained. 
Again, similar calculations were performed for the 
other biaxial components. In all cases in the present 
work, two regions of strain were investigated for 
-0 .03 < e < +0.03 and -0 .008 < e < +0.008, the aim 
being to obtain as parabolic a curve as possible near 
the minimum. A major source of error is the numerical 
accuracy of the minimization procedure which affects 
the smoothness of the computed curve. 

Results and discussion 

The systems investigated in the present work are: 
(a) CO2 which solidifies in a cubic structure (space 

group Pa3) with a tetramolecular unit cell; 
( b )  c 6 n  6 solidifying in orthorhombic form (space 

group Pbca) again with a tetramolecular unit cell; 
(c) (NH2)2CO with tetragonal symmetry (space 

group PT121m) and a bimolecular unit cell. 
The lattice parameters and fractional coordinates 

for the asymmetric unit are given in Table 1. The 
fractional coordinates for the other molecules in the 

Table 1. Fractional coordinates (xyz) for  the asym- 
metric units o f  carbon dioxide (Williams, 1983), ben- 
zene ( Williams, 1983) and urea ( Swaminathan, Craven 

&Mul lan ,  1984) 

M o l e c u l e  A t o m  x y z 

CO2 C 0.0 0.0 0.0 
O I 0-6697 0-6697 0.6697 
0 2  -0 .6697  -0 .6697  -0 .6697  

C6H6 C 1 - 0 . 4 6 6 0  1.3160 -0 .0560  
C2 0-4660 - 1-3160 0.0560 
C3 - 0 . 9 9 6 0  0.4270 0.8810 
C4 0.9960 -0 .4270  -0 .8810  
C5 -0 .5310  -0 .8890  0.9380 
C6 0.5310 0.8890 -0 -9380  
H7 -0 .8080  2.2830 -0 .0980  
H8 0.8080 -2-2830 0.0980 
H9 -1"7290 0"7410 1"5300 

H I 0 1 "7290 -0"7410 - 1 "5300 
H 11 -0"9210 - 1-5430 1 "6270 
H 12 0.9210 1"5430 - 1 "6270 

C O ( N H 2 )  2 C 0"00000 0"50000 0"32600 
O 0"00000 0"50000 0"59530 
N 1 0" 14590 0"64590 0" 17660 
H I 0"25750 0"75750 0"28270 
H2 0'14410 0"64410 -0"03800 
N2 -0"  14590 0"35410 0" 17660 
H3 -0"25750 0"24250 0"28270 
H4 -0"  14410 0"35590 -0"03800 

unit cell are generated prior to calculations using the 
standard symmetry operators for the given space 
groups as detailed in International Tables for  Crystal- 
lography (1983). For carbon dioxide (CO:) and ben- 
zene ( C 6 H 6 )  , interactions between atoms of types a 
and/3, functionally dependent on their separation rjk, 
are described by e x p - 6 - 1  potential-energy func- 
tions of the form 

~0,,~(~3k) = --A-~+ B,,~ exp (--C,~t~rjk)+ q'~q~ (9) 
rjk rjk 

whereas in the case of urea [O~C(NH2)2] ,  1 2 - 6 - 1  
interatomic functions are used: 

¢,~( rjk) = - A ~ /  r6k + B ~ /  r~ 2 + q~ql3/ rjk. (10) 

The terms in (9) and (10) represent the London dis- 
persion, the repulsive energy and the Coulomb inter- 
actions respectively. The a tom-atom parameters (A, 
B, C and q) for these two potentials are detailed in 
Table 2. 

The elementary cell dimensions and angles of the 
minimum-energy structures obtained in the present 
calculations for the given set of potentials and no 
symmetry restrictions are compared with experi- 
mental data in Table 3. The elastic constants obtained 
in the two strain regions mentioned above are presen- 
ted in Table 4, for all three systems. All calculations 
refer to the situation at 0 K and zero pressure. 

In the case of CO2 the deviation from cubic sym- 
metry is marginal. The elastic-tensor components 
obtained herein are in very good agreement with those 
obtained using the analytical equations developed by 
Pavlides, Pugh & Roberts (1991b) with the same set 
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Table 2. Details of  the intermolecular potentials used in the calculations 

A n  e x p - 6 - 1  p o t en t i a l  was used  in c a l c u l a t i o n s  on  c a r b o n  d iox ide  a n d  b e n z e n e  a n d  a 12-6-1  po ten t i a l  used  in the  c a l c u l a t i o n  on  urea.  

M o l e c u l e  

c o 2  

C6H6 

CO(NH2)2 

References: (a) Williams & Cox (1984); (b) 
(1974). 

Carbon dioxide 

Calc. 
Exp. (a) 

Benzene 

Calc. 
Exp. (~1 

A B C q Re fe r e nc e  

C-C 2439.8 3.7 x l0 s 3.60 (a) 
C-O 1656.0 2.9 x 105 3.78 (b) 
O-O 1129-0 2.3 x 105 3'96 (c) 
c 0.820 (b) 
O -0.410 (b) 

C-C 2439-8 3.7 × 105 3.6 (a) 
C-H 576.82 6.63 x 104 3.67 (d) 
H-H 136-4 1.1 x 104 3-74 (a) 
C -0.153 (d) 
H 0.153 (d) 

C-C 5601.0 1.26x 107 (a) 
C-O 3428.0 3.81 x 106 (a) 
C-N 5366.0 1" 10 X 10 7 ( a )  

C-H 0.0 0 (a) 
O-O 2098-0 1"15 x 106 (a) 
O-N 3285-0 3'3 × 106 (a) 
O-H 0.0 0-0 (a) 
N-N 5141.0 9.49x 106 (a) 
N-H 0'0 0'0 (a) 
H-H 0.0 0.0 (a) 
C 0.380 (e) 
O -0.380 (e) 
N -0"830 (e) 
H 0"415 (e) 

Williams (1983); (c) Cox, Hsu & Williams (1981); (d) Williams & Starr (1977); 

T a b l e  3. Structural data for minimum-gnergy configuration 

T (K) a (]k) b (,~) c (/~,) a (o) fl (o) 

(e) Hagler, Huler & Lifson 

y(o) 

0 5.6818 5.6808 5.6807 90.00 90-00 90-00 
83 5.575 5.575 5.575 90.00 90.00 90-00 

0 7.4206 9.2977 6.9899 90.00 90.00 90.00 
270 7.460 9.666 7.034 90.00 90.00 90.00 

78 7.292 9.471 6.742 90.00 90.00 90.00 

Urea 

Calc. 0 5.5461 5.5508 4.7903 90.04 89.93 89-97 
Exp) h) Room temp. 5.662 5.5662 4.716 90.00 90.00 90.00 

133 5.582 5.582 4.686 90.00 90.00 90-00 

References: (a) Williams (1983); (b) Swaminathan, Craven &Mul l an  (1984). 

Table 4. Elastic c o n s t a n t s  (10 9 Nm -2) 

C a r b o n  d i o x i d e  

Region of strain ctl ct2 c,~ 

-0"03 < e < +0"03 11 "81 7" 13 5.49 
-0"008< e < +0.008 12-24 6"95 5"29 
Other calculations 12- 34 7.01 5.51 ~ a ) 

13"57 7'38 6"23 Ih) 

Ben zen e  

Region of strain ct i c22 ¢33 C44 

-0.03 < e < +0"03 8-84 11.76 8.40 2.43 
-0-008 < e < +0.008 9'28 12" 14 8.87 3'86 
Other calculations 9.42 I 1-67 8.87 4.34 
Experiment (T= 138 K) 8.61 10.01 8-63 3.56 

Urea  

Region of strain ct i c33 c44 c66 

-0.03 < e < +0"03 18" 19 63-90 5" 15 23"61 
- 0 ' 0 0 8 <  e < +0.008 18"42 61'65 5'12 23"65 
Experiment 21.7 53-2 6.26 0-45 
At room temperature 11.2 - 5.9 8.44 

C5 5 C66 CI 2 C 13 C23 

7.81 1.29 8-68 8-15 8"51 
7-81 1.72 8"63 8"i5 8.87 
6.46 4.04 5"61 6-12 5-48 c' 
6-13 2'10 4.15 5'10 5"38 ('~ 

£12 C13 

17-71 12"87 
17.52 12.58 
8.9 24 (al 

10.2 (~) 

References: (a) Analytical method developed by Pavlides, Pugh & Roberts (1991b); (b) Walmsley (1968a); (c) Walmsley (1968b); 
(d) Fischer & Zarembowitch (1970); (e) Kretchetov, Svetlor, Teslenko & Kitaigorodsky (1971). 
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of  potentials.  As can be seen, these values are lower 
than those obta ined by Walmsley ' s  in termolecular  
potential  calculat ions (Walmsley,  1968a) in which a 
Lennard-Jones  function and a quadrupole  term were 
used, both being funct ional ly  dependent  on the inter- 
molecular  separation.  The present calculat ions con- 
tain more angular  dependence  by considering inter- 
atomic interactions explicitly. All calculat ions predict 
the crystal to be elastically anisotropic with (c11- 
c12)/2c44 ~ 0.5. The Cauchy  relation Cl2 = c44 is found 
not to hold,  implying that the r igid-molecule approxi-  
mat ion introduces an angular  dependence  of the 
in termolecular  forces which are no longer central. 

As in the present calculat ions,  the results obtained 
by Walmsley  (1968b) for the benzene crystal are also 
based on the interatomic potential  funct ions 
developed by Wil l iams (1966). The agreement  
between the two is good for all components  except 
the biaxial  elements cl2, Cl3 and c23, for which uni- 
variant calculat ions in the principal-axis  system were 
performed.  Correlat ion with exper iment  is also good 
except for the a forement ioned  components .  As men- 
t ioned in Walmsley  (1968b), the experimental  uncer- 
tainty for the shear  constants is set to 10% as opposed 
to 2% for the other moduli .  

The elastic constants calculated for urea using the 
potentials developed by Hagler, Huler  & Lifson 
(1974) are in fairly good agreement  with experiment .  
The data at room temperature  suggest that there is a 
fair amount  of  uncertainty in the exper imental  values 
especially for c66. The deviat ion from tetragonal sym- 
metry in cij again is only marginal .  

Concluding remarks 

The elastic constants of  molecular  crystals may be 
obtained,  using the crystal packing program P C K 8 3 ,  
to compute  strain-energy curves, for strains 10 -3 to 
10 -2 and fitting them with quadrat ic  uni l inear  func- 
tions. For the given set of  a tom-a tom potentials the 
absolute min imum-energy  configuration was sought 
and no symmetry  restrictions were imposed.  

The interatomic potential-energy functions 
employed,  coupled with the r igid-body condit ions,  
take the entire angular  dependence  into account. The 
analytical  equations developed within the same 
approximat ions  yield values for the elastic constants 

of  CO2 which are in very good agreement  with those 
of  the present method. Correlat ion with exper iment  
in some cases is very good. 

This work was supported by the SERC's  specially 
promoted programme in part iculate technology. 
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